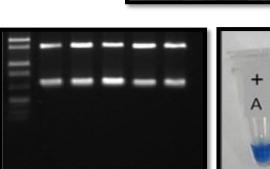
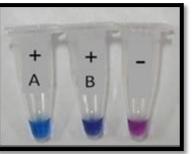
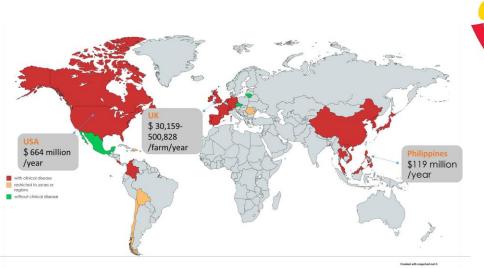


DEVELOPMENT OF RT-LAMP ASSAY ON Porcine Reproductive and Respiratory Syndrome Virus (PRRSV) FIELD STRAIN IN THE PHILIPPINES


Ronalie B. Rafael*, Clarissa Yvonne J. Domingo, Therese Marie A. Collantes and Loinda R. Baldrias



RATIONALE


- PRRS as an economically important disease of swine worldwide
- Diagnosis is often difficult.
- Diagnostic tests are available but vary in sensitivities and pose several limitations:

Virus isolation	Serologic test
RT-PCR	RT-LAMP

RATIONALE

Dry vs. Wet RT-LAMP

CRITERIA	DRY	WET
LAMP premix dried	Yes	No
Positive result	Violet => blue	Brown => green
Re-open tubes to instill dye	No	Yes
Need for cold storage	No	Yes
Affected by inhibitors	No	Yes
Shelf-life	> 5 months	> 3 months

RATIONALE

WHO ASSURED GUIDELINES FOR AN IDEAL DIAGNOSTIC TEST

		RT-PCR	RT-LAMP
A	ffordable	X	/
S	ensitive	/	/
S	pecific	/	/
U	ser-friendly	/	/
R	obust and rapid	X	/
E	quipment-free	X	/
D	eliverable to the end user	/	/

RATIONALE

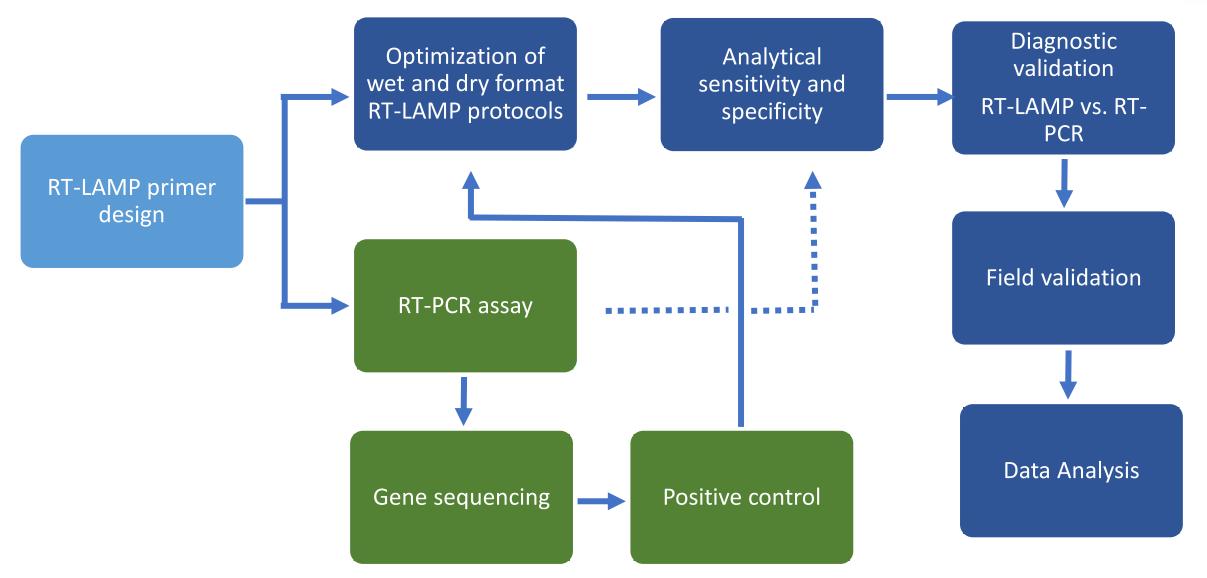
Why do we need to develop a new RT-LAMP assay for *PRRSV*?

Published LAMP primers and protocols may not work in all laboratory settings.

RATIONALE

What could be the contributions of this RT-LAMP assay once developed?

Adopted by diagnostics laboratories

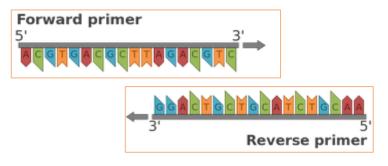

- Basis for developing an RT-LAMP assay kit for field diagnosis of PRRS
- Help farmers and veterinarians design control and prevention programs for PRRS in the farm

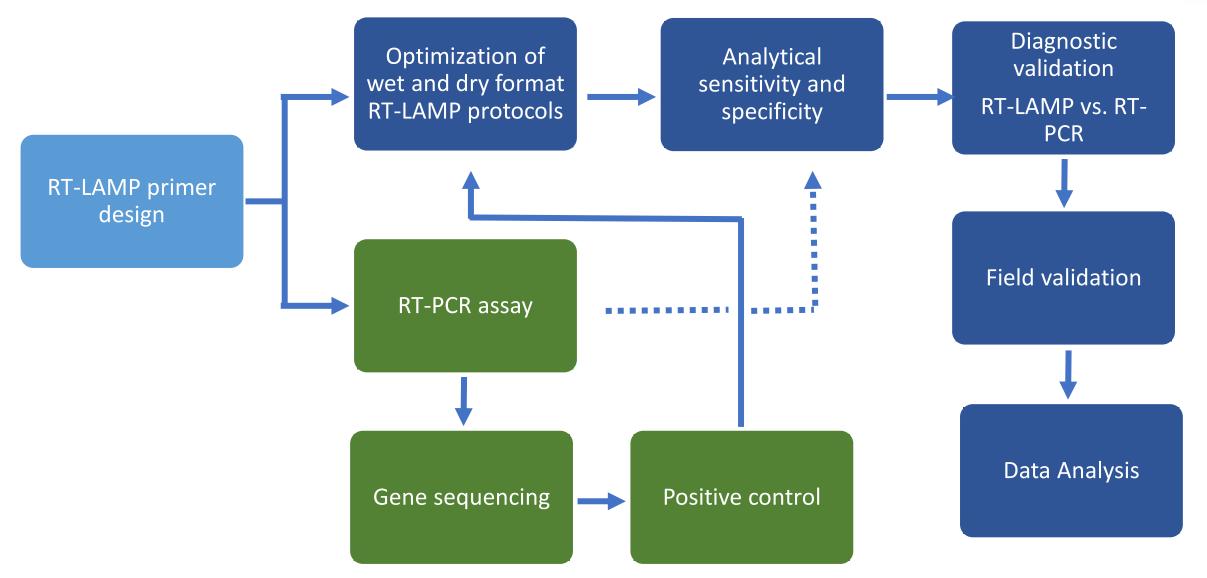
HOW ARE WE DOING IT?

HOW ARE WE DOING IT?

UPCVM-DA PL480 Project

← → C ☆ ● p	merexplorer.jp/e/ i.nl 📊 DNA microarray fin 📊 DNA microarray 😒 Helper T Cells and L 🔗 LAMP prime					
LAMP primer designing software						
PrimerExplorer >						
Features and operations environment for the LAMP primer destining software (PrimerEsphorer) software specifically for LAMP,						
Queries »	a novel gene amplification method.					
For inquiries, please contact us by e-mail.	PrimerExplorer V4 🔁 New version with enhanced operability PrimerExplorer V5 🔁					
	Please click for software information Please click for software information					

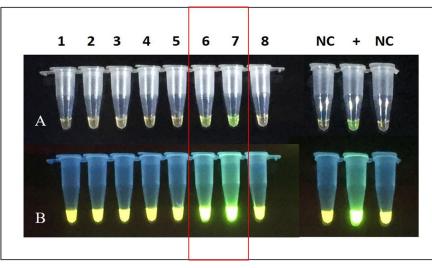



Table 2. The optimized primer sequences of *nsp2-B* epitope used in RT-PCR and RT-LAMP assay.

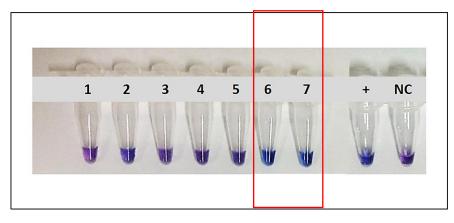
Primer	Length	Sequence (5'-3')
F3	19	GCCTCGA
B3	20	AGCTGC
FIP	41	AAGAC-
		CACCGT
BIP	40	GTCCAC-
		ACATCC
F loop	20	GCGTCTC
B loop	23	CCCTGG

HOW ARE WE DOING IT?

OUR FINDINGS #1


Table 2. The optimized primer sequences of <i>nsp2-B</i> epitopeused in RT-PCR and RT-LAMP assay.				
	Primer Length Sequence (5'-3')			
F3	19	GCCTCGA		
B3	20	AGCTGC		
FIP	41	AAGAC-		
Loop Primers	40	CACCGT GTCCAC- ACATCC		
F loop	20	GCGTCTC		
B loo	p 23	CCCTGG		

- 3 pairs of primers optimized: outer, inner, loop
- Use of loop primers reduced amplification time from 1 hour to 30 minutes



OUR FINDINGS #2

Wet format RT-LAMP

Dry format RT-LAMP

The results of wet RT-LAMP is in congruent with that of dry RT-LAMP.

Wet-format RT-LAMP and qRT-PCR has a lower limit of detection, i.e. more sensitive than dry-

format RT-LAMP!

87th PVMA Scientific Conference and Annual Convention/February 19-21, 2020

OUR FINDINGS #3

32.5 00fg 00p 0pg 0ng l0fg 30.0 bg Standard lfg Unknown 27.5 .pg .00fg 00pg Ong 25.0 0pg Ofg ng 22.5 5 20.0 17.5 15.0 12.5 10.0 Quant A 100fg 0pg pg 10fg lfg

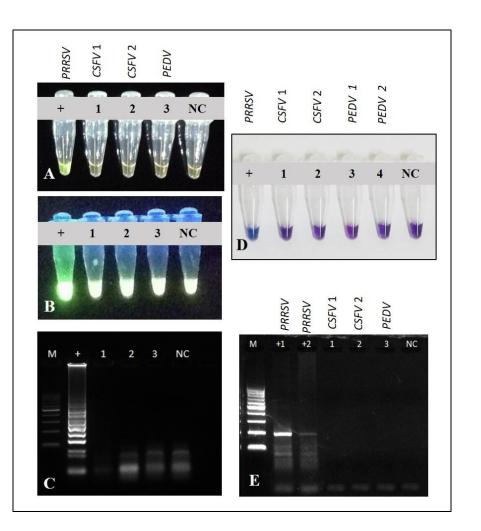

B

Figure 5. Analytical sensitivity of wet and dry format RT-LAMP vs. qRT-PCR using serially diluted viral RNAs.

SCEENTING SCEENTING

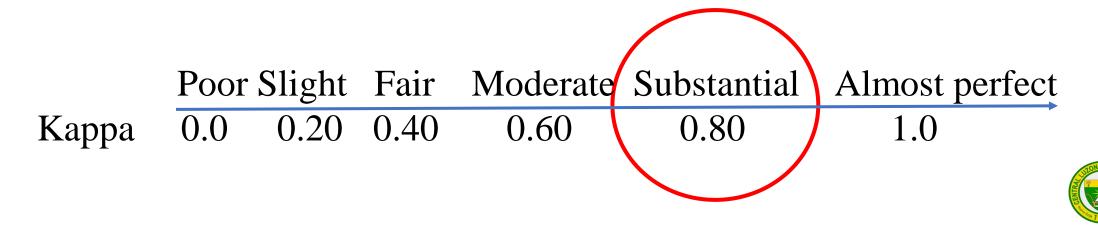
OUR FINDINGS #4

Wet and dry format RT-LAMP assays were specific for PRRSV.

Figure 7. Comparison of the analytical specificity of wet, dry format RT-LAMP and RT-PCR with PRRSV nsp2-specific primer set.

OUR FINDINGS #5

	RT-PCR			Apparent Prevalence
	Positive	Negative	Total	
RT-LAMP		\frown		<u>RT-PCR = 33.33%</u> (95%CI:44.73-48.56%)
Positive	15	6	21	(55/001.44.75-48.50/0)
Negative	0	24	24	RT-LAMP = 47%
Total	15	30	45	(95% CI: 31.4-35.3%)


Apparent Prevalence (%) =
$$\frac{number \ of \ positive \ samples}{total \ number \ of \ samples} \times 100$$

SCIENTING THE

SREAT

Kappa Agreement 0-0.01 Less than chance agreement **RT-LAMP** (wet and dry) 0.01-0.20 Slight agreement 100% Sensitivity 0.21-0.40 Fair agreement 0.41-0.60 Moderate agreement Specificity 80% 0.61-0.80 Substantial agreement 0.73* Kappa coefficient 0.81-0.99 Almost perfect agreement

OUR FINDINGS #6

OUR FINDINGS #7

Molecular phylogenetic analysis of *Porcine reproductive and respiratory syndrome virus* isolates based on partial *nsp2* nucleotide sequences

 ✓ All seven isolates were of North American type, closely related to VR2332* and PRRSV2 DK-2011-30-6-27* strain

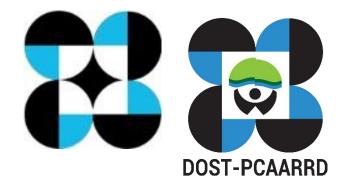
SUMMARY, CONCLUSION AND RECOMMENDATION

- Wet and dry format RT-LAMP assays are optimized based on analytical sensitivity and specificity.
- Both formats are validated in the field=> 100% sensitive and 80% specific
- ✤ RT-LAMP and RT-PCR results have substantial agreement.
- Overall, this study was able to develop wet and dry format RT-LAMP assays for *PRRSV* that is robust and rapid, sensitive, specific, and can be used for field diagnosis.

***** Recommendations:

- 1. Further studies to improve the sensitivity of the developed dry format RT-LAMP assay
- 2. Ways to reduce extraction time

ACKNOWLEDGEMENT




Funding:

- Department of Science and Technology-Philippine Council for Agriculture, Aquatic and Natural Resources Research and Development (DOST-PCAARRD) through the Graduate Research and Education Assistantship for Technology (GREAT) Program
- College of Veterinary Medicine, University of the Philippines-Los Banos
- Central Luzon State University

Partial sequence of PRRSV Laguna strain nsp2 gene: Dr. Arman Parayao

Use of Laboratory Facility: Philippine Carabao Center through Dr. Marvin Villanueva

