MOLECULAR CHARACTERIZATION OF AFRICAN SWINE FEVER VIRUS IN A BACKYARD SWINE FARM IN BULACAN PHILIPPINES

Gianne May R. Gagan DVM, Erika Arellano, RMT and Dennis V. Umali, DVM, PhD

> **21 Feb 2020** SMX Convention Center Lanang, Davao City

INTRODUCTION

African Swine Fever

2017, FAO, AFRICAN SWINE FEVER: DETECTION AND DIAGNOSIS: A manual for veterinarians

African Swine Fever

- Incubation period: 4-19 days
- Virus excretion: can begin up to two days prior to the appearance of clinical signs
- Viral shedding: saliva, tears, nasal secretions, urine, feces, and secretions from the genital tract

The ASF Virus

• Viral genome: 170 to 195kbp

 encodes 150 to 200 proteins, around 50 of them structural

- Genotyping: partial sequence analysis of B646L gene encoding the viral protein72 (p72)
- Twenty-four ASFV genotypes (I-XXIV)

The use of the three regions of the ASFV DNA, p72, p54, and CVR, to characterize ASFV is much sufficient despite the presence of many other markers

- B646L open reading frame encoding the p72 protein
 - major capsid protein
- p54 E183L gene that encodes the p54 ASFv protein essential in the recruitment of envelope precursors to the assembly site
 CVR The B620L gene encodes the central variable region where repeated amino acid tetramers that vary in number and type among ASFv isolates are located

Genotyping

- Variability of a segment in a single gene and protein
- Used for mainly phylogenetic and molecular epidemiological purpose
 - Identify the source of outbreaks
 - Quickly differentiate closely related strains
 - Establish pattern of the outbreak for future control and eradication

CASE PRESENTATION

TIMELINE

Blood 4 from apparently healthy pigs 2 from sick pigs Tissues Tissues Dirt/Mud

- Water

DNA Sequencing Phylogenetic Analysis

Primer Name	Primer Sequence	Thermoprofile	
Diag Primer p72-1	5- ATG-GAT-ACC-GAG-GGA-ATA-GC -3	Pre-warming	95°C for 3 mins (1 cycle)
Diag Primer p72-2 5- CTT-ACC-GAT-GAA-AAT-GAT-AC-3	Amplification	95°C for 30 sec	
	Annealing Extension	50°C for 30 sec 50°C for 30 sec (35 cycles)	
		Final Extension	72°C for 10 min (1 cycle)

Blood **Feed Samples** 3 6 - 4 from apparently healthy pigs - From pens with sick pigs - 2 from sick pigs - From warehouse **Environmental Samples** Tissues Dirt/Mud - Water Phylogenetic DNA PCR

Sequencing

Analysis

Primer Name	Target	Sequence	Band size	
p72-U	C-terminal	5'-GGCACAAGTTCGGACATGT-3'		
p72-D	region of the p72 gene	5'-GTACTGTAACGCAGCACAG-3'	478bp	
PPA722	whole gene encoding the p54 protein	5'-CGAAGTGCATGTAATAAACGTC-3'	676bp	
PPA89		5'-TGTAATTTCATTGCGCCACAAC-3'		
CVR-FL1	B602L (CVR) gene	5'-TCGGCCTGAAGCTCATTAG-3'	Variable size	
CVR –FL2		5'-CAGGAAACTAATGATGTTCC-3'		

RESULTS

Sample

Blood (AH Pig 1)	Positive
Blood (AH Pig 2)	Negative
Blood (AH Pig 3)	Positive
Blood (AH Pig 4)	Positive
Blood (Sick Pig – Pooled Building 1)	Positive
Blood (Sick Pig – Pooled Building 1)	Positive
Dead Pig (Pooled Tissues)	Positive
1330	.17

Sample

Feed from Warehouse	Negative
Water form Irrigation	Negative
Water from Entrance Gate	Negative
Water from Nearby Building	Negative
Canal Water	Negative
Feeds from Pens with Sick Pigs (Building1)	Negative
Feeds from Pens with Sick Pigs (Building 2)	Negative
Dirt/Mud from Connecting Pathway	Negative

TIMELINE

Direct nucleotide sequencing confirmed that the detected PCR products (n=6) contained nucleotide sequences of the p72 gene of African Swine Fever Virus.

Basic Local Alignment Search Tool

BLAST finds regions of similarity between biological sequences. The program compares nucleotide or protein sequences to sequence databases and calculates the statistical significance. Learn more

Introducing: Magic-BLAST

Magic-BLAST is a new tool for mapping large sets of next-generation RNA or DNA sequencing runs against a whole genome or transcriptome Wed, 24 Aug 2016 11:00:00 EST B More BLAST news.

BLAST Genomes Search Microbes

Genetic analysis showed that the p72 gene of the ASFV from all samples were 100% similar to each other

Select all 82 sequences selected

GenBank Graphics Distance tree of results

Description African swine fever virus strain Belgium/Etalle/wb/2018, complete genome African swine fever virus isolate ASFV/Kyiv/2016/131, complete genome frican swine fever virus isolate ASFV-wbBS01, complete genome frican swine fever virus major capsid protein p72 gene, complete cds African swine fever virus isolate ASFV Belgium 2018/1 genome assembly, complete genome African swine fever virus isolate Pig/HLJ/2018, complete genome African swine fever virus strain Georgia 2008/2, partial genome African swine fever virus strain Georgia 2008/1, complete genome frican swine fever virus isolate ASFV-SY18 major capsid protein p72 gene, complete cds African swine fever virus isolate China/2018/AnhuiXCGQ, complete genome frican swine fever virus isolate ASFV/POL/2015/Podlaskie, complete genome African swine fever virus isolate Estonia 2014 genome assembly, complete genome: monop African swine fever virus p72 (B646L) gene, complete cds African swine fever virus Georgia 2007/1 complete genome African swine fever virus isolate mk major capsid protein p72 (p72) gene, complete cds frican swine fever virus isolate Mkuzi 1979, complete genome African swine fever virus isolate RSA/W/1/99 p72 gene, partial cds frican swine fever virus isolate DRC/624/89 p72 gene, partial cds African swine fever virus isolate ANG/70 p72 gene, partial cds African swine fever virus isolate wb major capsid protein p72 (p72) gene, complete cds African swine fever virus isolate wart major capsid protein p72 (p72) gene, complete cds African swine fever virus isolate Pr5 major capsid protein p72 (p72) gene, complete cds

Comparison of the partial sequence of the p72 gene showed that the ASFV strain from the samples were 97-100% closely related to: Georgia ASFV (2007) Krasnodar, Russia ASFV (2012) Estonia ASFV (2014) Poland ASFV (2014) Belgium ASFV (2015) Belgium ASFV(2018) China ASFV (2018) Vietnam ASFV(2018)

MOLECULAR CHARACTERIZATION OF ECONOMICALLY IMPORTANT LIVESTOCK AND POULTRY PATHOGENS IN THE PHILIPPINES

(Funding Source: Poultry Products Quality Control (PPQC Co. Ltd.))

Figure 3. Phylogenetic analysis of the detected ASFV strain

Summary

Print
Close

Information received on 30/10/2019 from Dr Ronnie Domingo, Officer-In-Charge, Chief Veterinary Officer, Bureau of Animal Industry, Department of Agriculture, Manila, Philippines

Report type Follow-up report No. 1 Date of start of the event 25/07/2019 Date of confirmation of the event 30/08/2019 Report date 30/10/2019 Date submitted to OIE 30/10/2019 First occurrence of a listed disease in the country **Reason for notification** Causal agent African swine fever virus (genotype II) Nature of diagnosis Clinical, Laboratory (advanced), Necropsy This event pertains to the whole country Epidemiology Immediate notification (09/09/2019) Follow-up report No. 1 (30/10/2019) Follow-up report No. 2 (04/11/2019) Unknown or inconclusive Follow-up report No. 3 (27/01/2020) Source of the outbreak(s) or origin of Illegal movement of animals Related reports Follow-up report No. 4 (28/01/2020) infection Swill feeding Follow-up report No. 5 (29/01/2020) Fomites (humans, vehicles, feed, etc.) Eallow up rapart No. 6 (20/01/2020) Suspected swill feeding, then spread through illegal movement of already sick pigs that were being **Epidemiological comments Diagnostic test results** sold at a lower price.

Laboratory name and type	Species	Test	Test date	Result
Animal Disease Diagnostic and Reference Laboratory (ADDRL) (National laboratory)	Swine	real-time PCR	16/08/2019	Positive
The Pirbright Institute (OIE Reference Laboratory)	Swine	real-time PCR	30/08/2019	Positive

Laboratory name and type		Test	Test date	Result
The Pirbright Institute (OIE Reference Laboratory)	Swine	virus isolation	11/09/2019	Positive
The Pirbright Institute (OIE Reference Laboratory)	Swine	virus sequencing	11/09/2019	Positive

Current genetic typing of ASFV isolates is based on nucleotide sequencing of the p72 capsid protein gene (B646L) and amplification of full-length polymorphisms of various genomic regions

- Genotype II
- Detected ASFV strain is 97-100% similar to the ASFV strain currently circulation in Europe and in Asia

The Materials and Methods used in this study were from published references. Results obtained in this study are for scientific and research purposes only. Only ASFV Reference Laboratories are authorized to make an official ASF diagnosis following validated protocols by the OIE.

Thank you!

p72 ASFV phylogenetic analysis does not accurately define ASFV hemadsorption inhibition assay serogroups.

Conventional ASFV genotyping cannot discriminate between viruses of different virulence or predict efficacy of a specific ASFV vaccine (Malogolovkin *et al.*, 2015)

The results show that genotypic and serogroup diversity are greatest in a relatively limited area, mainly in southeastern Africa. In contrast, non-ASFV–endemic countries, where ASF outbreaks were caused by ASFV of a single genotype, exhibited low or no serogroup diversity. Single genotype clades of ASFV were observed (Malogolovkin, 2015)