7[™] PINOY PORK **SWINE INDUSTRY:** HALLENGE PADAYON...PATULOY...BUMANGON!

The depth of feed sanitation – Controlling what are unseen

Christian Lückstädt ADDCON, Germany

GLOBAL FOOD WASTE NOT, WANT NOT.

tution of

6633

IN INDIA, 21 MILLION TONNES OF WHEAT IS WASTED EACH YEAR DUE TO INADEQUATE STORAGE AND DISTRIBUTION SYSTEMS.

Observation with organic acids Combating food and feed waste

Lückstädt, Technical Director, Feed, ADDCON GmbH

Major factors affecting microbial growth

- Temperature
- Composition of the gas atmosphere
- Substrate properties water activity (a_w), water content (moisture) pH nutrient supply
- Competition (microorganisms, insects...)

Interactions between those factors very likely!

Contamination of feed components

	Bacteria CFU/g	Fungi CFU/
Corn	5,000,000	40,000
Wheat	6,000,000	40,000
Rye	6,000,000	40,000
Barley	8,000,000	50,000
Oats	15,000,000	70,000
Soybean, heated	1,000,000	20,000
By-products of oil production	2,000,000	20,000

Schmidt, 1991

Spoilage & nutrient value

• Effect of spoilage cannot be generalized

- Diverse nature of the various nutrients
- Chemical heterogeneity within each class of compounds
- Complex interactions of all variables

Microbiological changes

Growth or presence of toxicogenic and/or infective microorganisms

Enzymatic changes

- Hydrolytic reactions (lipases, proteases, etc.)
- Lipoxygenase activity

Chemical changes

- Oxidative rancidity
- Non-enzymatic browning
- Nutrient losses

Effect of mould contamination on nutritive value of feeds

ecreased nutritional values of mouldy corn-depending on storage time

	Reduction in %	
Corn-energy	-5%	
Corn-crude protein	-7%	
Corn-crude fat	-63%	
Corn, stored 25 days	-37% to -40%	
Corn, stored 50 days	-52% to -57%	

Tindall, 1983; Bartov, 1985

Mycotoxins formation – Mycotoxins on the field

eld fungi like Fusarium are unavoidable

oo much rain increase the likelihood of field fungi

to late harvesting time increases the likelihood

Storage Mycotoxins

- imary factors influencing fungal growth in e are moisture content (more precisely, the activity) and temperature.
- s reason, water which becomes the main inant of invasion and fungal growth.
- nycotoxins are produced they will prevail, the fungus will be destroyed by heat or cal sterilization!
- I storage mycotoxins are Ochratoxins and tins.

Hidden infections in Wheat

Storage fung species of the nicillium and A also find prote **spaces** under husk, which in warm and ditions. The re development is me rise in term

Metal silo - problem accelerator

Heat acceleration:

Metal is a good conductor of heat → the external surface of a silo gets heated during sunshine hours. >almost 60°C in the afternoon >only 20-25°C at night

Contamination of feed during storage

Condensation of water at night!

Rule of thumb: at ambient temperature the water holding capacity of air is halved with a reduction of 7°C air temperature.

Condensation and temperature-dewpoin

Global trends – Contamination is the rule in 2022!

Cargill's 2022 World Mycotoxin Report

- More than 300,0000 mycotoxin analyses
- 75% were positive and above detection limits

		DON	ZEN	FUM	T2	Aflatoxin
	Corn- based ingredients	63%	55%	44%	33%	-
	Cereal- based ingredients	66%	31%	-	28%	25%
	Oilseeds- based ingredients	-	64%	-	24%	15%

Key Points

- nycotoxin risk is high, especially in the region
- ention of mycotoxins is not possible in all cases
- feed ingredients are contaminated with >1 mycotoxin
- effects on the animals vary by the type of mycotoxins
- o the stereochemistry of the mycotoxins, different version of the mycotoxins, different version of the threat!

OTOXINS

Holistic Approach

Propionic acid inhibits mycotic growth - thereby preventing fungal-degradation of feed...

Adapted from University of Marburg, Germany

Formic acid inhibits bacteria growth - thereby preventing bacteria degradation of feed...

©ADDCON 2012, Germany

Production line cleaning - Philippines

comparison of Total *Coliform* Count (CFU/sq inch) before and after cleaning the raw naterial pouring pit with a mixture of coarsely ground corn and feed hygiene enhanc

Binding Properties Mycotoxin Binders

Detoxification properties

Sodium metabisulfite usage:

food industry as preservative, antioxidant, antimicrobial agent, effect against mycotoxins.

- ✤ Aflatoxins,
- ✤ Trichothecenes,
- Deoxynivalenol.
 - Sodium metabisulfite (SMB; Na₂S₂O₅), a known bio-transforming agent of DON which, when hydrothermally processed with DON, forms a nontoxic DON sulfonate adduct.
 - Impact of sodium metabisulphite (SMB) against DON has been widely tested within the last years-and it appears that the substance is very effective in detoxifying DON (Dänicke, 2020).

Impact of DON in pigs

gs are the most sensitive on DON

nong all animals, primarily because DON rapidly absorbed and poorly metabolized tienne and Waché, 2008).

- duced feed intake,
- mplete feed refusal,
- miting,
- neral growth performance decreasing.

Metabolic path of DON in pigs

In-house accelerated storage trials

Accelerated storage trials:

- Raw material (clean wheat, moisture)-up to 2 months
- Compound feed (challengemoisture and high microbiolo load)–lasting 4 weeks

ADDCON-storage-climate chamber

Climate chamber data-temperature and relative humidity-March-May 2021

Compound feed storage–3rd week

Wheat storage – 66 days

Id count of "clean wheat" stored for 66 days under accelerated condit moisture, 80% RH, 25°C)–with or without a feed hygiene product (3.0

ADDCON, Germany, 2021

Compound feed storage–2nd week

cterial count of compound feed stored for 14 days under accelerated a allenged conditions (15% moist feed, high microbial load, 80% RH, 25° with or without a feed hygiene product (3.0 kg/t)

Impact on animal performance

The positive effect on the use of SMB against DON in animal feed, and especially in pigs, has beer eatedly published by a group of researchers from Prof. Tokach's institute at Kansas State University,

	Product added, %	
	Control	Sodium metabisulfite
Day 0 to 21	-	0.50
Day 21 to 28	-	0.25
Day 0 to 21		
ÁDG, g	457 ^b	483ª
ADFI, g	589 ^b	608ª
G:F, g/kg	776 ^b	796ª
Day 21 to 28		
ÁDG, g	679°	697 ^{bc}
ADFI, g	971 ^b	995ªb
G:F, g/kg	700 ^b	700
Day 0 to 28		
ADG, g	512 ^b	536ª
ADFI, g	684 ^b	704ª
G:F, g/kg	749 ^b	762ª
BW, kg		
day 0	7.0	7.0
day 21	16.8 ^b	17.3ª
day 28	21.6 ^b	22.2ª

Effects of 0.5% SMB on growth of weaned piglets (modified after Shawk et al. 2018)

Pigs fed SMB-based feed additives had improved ADG compared to pigs fed a control diet. It was furthermore found that higher inclusions and longer feeding of SMB resulted in the greatest benefit.

Cutting synergistic impacts of mycotoxins

orange lines: synergistic impact dotted grey lines: added impact

The holistic approach to feed hygiene

